Calcolo Scientifico in Python - Ottimizzazione e PDE per la modellistica

Questo Corso è parte del

Pathway in Scientific Computing with Python


Il corso avanzato si propone di illustrare metodi computazionali più complessi, che richiedono conoscenze matematiche più avanzate. In particolare questo corso presenta diversi algoritmi di ottimizzazione nonlineare, evidenziandone vantaggi e svantaggi a seconda delle applicazioni, ed espone i concetti base della simulazione di semplici modelli della meccanica del continuo, mediante differenze finite ed elementi finiti.


Frequenza e Attestati

Frequenza
GRATUITO!
Attestato di Partecipazione
GRATUITO!

Video presentazione del CORSO
Categoria

Computer and Data Sciences

Ore di Formazione

0

Livello

Avanzato

Modalità Corso

Tutoraggio

Lingua

Italian

Durata

2 Settimane

Tipologia

Online

Stato del Corso

Tutoraggio Soft

Avvio Iscrizioni

21 Dic 2018

Apertura Corso

21 Gen 2019

Inizo Tutoraggio

21 Gen 2019

Fine Tutoraggio

22 Feb 2019

Tutoraggio Soft

23 Feb 2019

Chiusura Corso

Non impostato
  • Risolvere numericamente problemi di ottimizzazione nonlineare;
  • Progettare e implementare semplici algoritmi su discretizzazioni dello spazio (“mesh”);
  • Simulare al calcolatore semplici modelli del continuo, statici e dinamici.

I destinatari del corso sono studenti, laureati, ricercatori di qualunque disciplina, interessati al calcolo scientifico ad un livello intermedio/avanzato, tipico ormai di tutti i settori delle scienze applicate e dell'ingegneria.

Conoscenze pregresse necessarie sono:
Conoscenze di base di programmazione, in particolare in linguaggio Python;
Conoscenze di base di matematica, tipiche dei primi due anni delle lauree triennali di tipo scientifico o ingegneristico.

Verrà indicato del materiale introduttivo per colmare eventuali lacune. Per quanto riguarda il linguaggio Python, si raccomanda vivamente di consultare il materiale nel sito www.python.org


Libri di testo:

  • Dispense del corso erogate sotto forma di slides PDF e iPython notebooks


Letture consigliate:

  • Hans Petter Langtangen, “A Primer on Scientific Programming with Python”, Springer, 2016
  • Documentazione Numpy https://docs.scipy.org/doc/numpy/contents.html
  • Documentazione Scipy   https://docs.scipy.org/doc/scipy/reference/
  • Documentazione Matplotlib https://matplotlib.org/contents.html
  • Scipy Lecture Notes  http://www.scipy-lectures.org
  • Scipy CookBook http://scipy-cookbook.readthedocs.io/index.html
  • CUDA C Programming Guide: https://docs.nvidia.com/cuda/cuda-c-programming-guide/
  • Numba for CUDA GPUs: http://numba.pydata.org/numba-doc/0.38.0/cuda/index.html

Il corso è strutturato in brevi video di spiegazione dei programmi e della sperimentazione legata agli esempi, nonché in test che prevedono anche brevi attività di programmazione e sperimentazione numerica.L’approccio didattico è orientato ad esporre i concetti teorici tramite esempi applicativi ed attività sperimentali al calcolatore.